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Abstract. In this paper we construct a new type of Haar wavelets, calledτ -wavelets of Haar,
using the arithmetics of the solutionsτ = 1

2(1 + √
5) and σ = 1

2(1 − √
5) of the algebraic

equationx2 = x + 1.

1. Introduction

Most of the discrete (orthogonal) wavelet analysis is based on binary subdivisions of
intervals. This is the key point of the multiresolution analysis [Me92, Me93, D92]. An
increasing sequence{Vj }j∈Z of subsets ofL2(R) is defined by

f (x) ∈ Vj ⇐⇒ f (2x) ∈ Vj+1. (1.1)

The following algebraic identity is crucial in the subdivision process

1

2j
= 1

2j+1
+ 1

2j+1
. (1.2)

Once a ‘father wavelet’ϕ(x) ∈ V0 has been identified, a Fourier algorithm allows one to
find a second function, the ‘mother wavelet’, in the orthogonal complementW0 of V0 in
V1, i.e. V1 = V0 ⊕W0.

DefiningWj , j ∈ Z, by

f (x) ∈ W0 ⇐⇒ f (2j x) ∈ Wj (1.3)

then

ψj,k(x) = 2j/2ψ(2j x − k) k ∈ Z (1.4)

is an orthonormal basis ofWj , and we have

L2(R) =
+∞⊕
−∞

Wj. (1.5)

For example, the Haar basis is recovered by just choosingϕ(x) = χ[0,1](x).
The aim of the present paper is to parallel on an elementary level this construction

of the discrete set{ψj,k} by considering a subdivision process based on the number
τ = 1

2(1 + √
5) ≈ 1.618. . . (the ‘golden mean’). The counterpart of (1.2) is the following

relation:
1

τ j
= 1

τ j+1
+ 1

τ j+2
. (1.6)
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From that point of view,τ is the closest relative of 2, in spite of the fact that it is the
furthest irrational in terms of approximation by rationals!

In that lies an obvious motivation for a development of a multiresolution analysis based
on the numberτ . Here we construct the Haar basis, called Haarτ -wavelet basis, as a
preliminary to any deeper multiresolution theory.

From a physicist’s viewpoint, once theτ -wavelets are identified and constructed, one can
expect to find them particularly advantageous in problems where the pentagonal symmetry,
combined with self-similarity, plays a privileged role, for example in problems involving
physical spectra of quasicrystalline solids. There it is quite natural to use them as a tool
complementary to the Fourier exponential in considering the quantum mechanical problems
of energy spectra, integrated densities of states or wavefunctions for transport electrons
interacting with atoms situated in vertices of a quasilattice with local icosahedral symmetry
[JM95]. Indeed as exponential functions of Fourier adequately reflect all lattice geometrical,
optical and quantum features (translational and possibly rotational invariance, diffusion
pattern, Bloch waves) ‘quasilattice’ functions are still lacking. Those objects should reflect
on their side the quasilattice spatial organization based on invariance under dilation and,
possibly, non-global rotation [BDG94].

For simplicity we consider here only one-dimensional problems. It should be noted that
two- and three-dimensional cases differ mainly in the scale of technical computations.

2. Arithmetics of τ -adics

Let us recall that the algebraic equation

x2 = x + 1 (2.1)

has the solutions

τ = 1
2(1 +

√
5) and σ = 1

2(1 −
√

5) (2.2)

which satisfy the identities

τ j = τ j−1 + τ j−2 and σ j = σ j−1 + σ j−2 for any j ∈ Z (2.3)

and also

τσ = −1 τ + σ = 1 (2.4)

τ j = Fjτ + Fj−1 σ j = Fjσ + Fj−1 (2.5)

whereFj , j ∈ Z>−1 are the terms of the Fibonacci series

Fj+1 = Fj + Fj−1 (2.6)

with

F−1 = 1 F0 = 0 F1 = 1 F2 = 1 F3 = 2

F4 = 3 F5 = 5 F6 = 8 F7 = 13, . . . .

The property (2.3) is essential for the arithmetics based on the numberτ .
Let x be a real positive number in the interval ]0, 1[. Let m0 = m0(x) be the smallest

natural number such that
1

τm0
6 x <

1

τm0−1
. (2.7)

Then we have

0 6 x − 1

τm0
<

1

τm0−1
− 1

τm0
= 1

τm0+1
.
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Next letm1 be the smallest natural number such that
1

τm1
6 x − 1

τm0
<

1

τm1−1
6 1

τm0+1
(2.8)

or equivalently

0 6 x − 1

τm0
− 1

τm1
<

1

τm1+1
.

In this way one can construct an increasing series
1

τm0
,

1

τm0
+ 1

τm1
, . . . (2.9)

evidently converging tox. Since 1
τm1 <

1
τm0+1 follows from (2.8), we havem1 > m0 + 2.

Hence the successive powers ofτ appearing in each term of the series (2.9) differ at least
by 2.

Similar reasoning with powers ofτ , first the positive ones and then the negative ones,
allows one to express any positive numberx as the limit of the increasing series

τn0, τ n0 + τn1, . . . , τ n0 + τn1 + · · · + 1

τm0
+ 1

τm1
+ · · ·

where again the difference of two successive exponents ofτ is at least 2. Consequently
any real numberx can be uniquely presented in the form

x = τn0

∞∑
n=0

knτ
−n n0 ∈ Z

k0 =


1 if x > 0

0 if x = 0

−1 if x < 0

kn =


0 or 1 if x > 0

0 if x = 0

0 or − 1 if x < 0

for all n > 0, knkn+1 = 0.

(2.10)

We say thatx is τ -integer precisely if, in the form (2.10), it is written with no negative
powers ofτ , i.e. kn = 0 for all n0 − n < 0. For example, a few of the firstτ -natural
numbers are the following:

0, 1, τ, τ 2, τ 2 + 1, τ 3, τ 3 + 1, τ 3 + τ, τ 4, τ 4 + 1, τ 4 + τ, τ 4 + τ 2, τ 4 + τ 2 + 1, . . . . (2.11)

We say that a numberx is τ -rational if the sum in (2.10) is finite,

kn = 0 for all n > nmin ∈ Z.
Examples ofτ -rational numbers are

√
5 = τ + 1

τ
and 2= τ + 1

τ 2
(2.12)

as well as all the integers andτ -integers and all the elements of the quadratic ring
Z[1, τ ] ≡ Z[τ ] of τ -integers. In view of the identities (2.3), we can write the latter
as

Z[τ ] = {x = m+ n
√

5|m, n ∈ Z}. (2.13)

Note, however, that numbers ‘simple’ as1
2 are represented as an infinite series:

1

2
=

∞∑
j=0

1

τ 3j+1
. (2.14)
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3. τ -wavelets of Haar

Consider the Hilbert spaceL2[0, 1] and let us recall its well known basis of Haar. Leth(x)
be the function defined as follows:

h(x) =


1 for x ∈ [0, 1

2]

−1 for x ∈ ] 1
2, 1]

0 for x 6∈ [0, 1].

(3.1)

Then one defines the sequence of the functions

hj,k(x) = 2j/2h(2j x − k) (3.2)

for all j ∈ N and k ∈ N such thatk < 2j , that is, k takes all the integer values in the
interval between 0 and 2j − 1.

The support ofhj,k(x) is the diadic interval [k2j ,
k+1
2j ] ⊂ [0, 1] which can be divided into

two equal parts[
k

2j
,
k

2j
+ 1

2j+1

]
and

]
k

2j
+ 1

2j+1
,
k + 1

2j

]
where the functionhj,k(x) takes, respectively, the values 2j/2 and−2j/2. The diadic equality

1

2j
= 1

2j+1
+ 1

2j+1
(3.3)

is crucial in this process of ‘multiresolution’. It is not difficult to show that the set

{hj,k} j, k ∈ N, k < 2j

together with the characteristic functionχ[0,1] forms an orthonormal basis ofL2[0, 1].
This follows from the possibility to write any real number as a binary number and from

the subdivision (3.3).
A ‘ τ -adic’ form of the same method is our subject here. One can write any real number

in a ‘τ -adic’ form (2.10) and, due to the relation

1

τ j
= 1

τ j+1
+ 1

τ j+2
(3.4)

we can subdivide the segment [0, 1] into smaller and smallerτ -adic subsegments. For
example,

[0, 1] =
[

0,
1

τ

]
∪

[
1

τ
, 1

]
. (3.5)

The length of the first one is 1/τ , while for the second one it is 1/τ 2 = 1/τ 3 + 1/τ 4:[
0,

1

τ

]
=

[
0,

1

τ 2

]
∪

[
1

τ 2
,

1

τ

]
[

1

τ
, 1

]
=

[
1

τ
,

1

τ
+ 1

τ 3

]
∪

[
1

τ
+ 1

τ 3
,

1

τ
+ 1

τ 3
+ 1

τ 4

]
.

(3.6)

Continuing further in the same way, one arrives at the partition of [0, 1] with generic closed
segment [

b

τ j
,
b + 1

τ j

]
(3.7)

whereb is a τ -natural number satisfying the following two conditions:
(A) 0 6 b 6 τ j − 1;
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Figure 1. The first four steps of theτ -subdivision of the interval [1, 0].

(B) the term 1 is not present in theτ -adic expansion ofb, i.e. is aτ -integer multiplied
by τ .

A few of the first successive partitions of [0, 1] are shown in figure 1. Thusb has the
general form

b = τ j
′ + kj ′−1τ

j ′−1 + · · · + k1τ with km ∈ {0, 1}, kmkm+1 = 0, j ′ < j. (3.8)

Let us show that condition(A) holds for anyb of the form (3.8). For that consider the
obvious inequality

b 6 τ j−1 + τ j−3 + · · · + k1τ (3.9)

wherek1 = 1 for j even andk1 = 0 for j odd. Thus we have

b 6 τ 2p + · · · + τ 2 = τ j − τ j = 2p + 1

b 6 τ 2p−1 + · · · + τ = τ j − 1 j = 2p.
(3.10)
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The segment (3.7) of length 1/τ j is the union of two segments of the next step of the
subdivision, its two subsegments being of length 1/τ j+1 and 1/τ j+2:[

b

τ j
,
b + 1

τ j

]
=

[
b

τ j
,
b

τ j
+ 1

τ j+1

]
∪

[
b

τ j
+ 1

τ j+1
,
b + 1

τ j

]
. (3.11)

Clearly such a subdivision is always possible. Indeed each subsegment can be written as
follows: [

b

τ j
,
b

τ j
+ 1

τ j+1

]
=

[
bτ

τ j+1
,
bτ + 1

τ j+1

]
[
b

τ j
+ 1

τ j+1
,
b + 1

τ j

]
=

[
bτ 2 + τ

τ j+2
,
bτ 2 + τ + 1

τ j+2

]
.

In both cases we obtain the form[
b′

τ j
′ ,
b′ + 1

τ j
′

]
whereb′ verifies the conditions(A) and(B):

(A) 0 6 b′ 6 τ j
′ − 1 since 06 b 6 τ j − 1 implies 06 bτ 6 τ j+1 − τ 6 τ j+1 − 1 and

0 6 bτ 2 + τ 6 τ j+2 − τ 2 + τ = τ j+2 − 1.
(B) The term 1 is not present in theτ -adic expansion ofb′ because:

(Ba) 1 does not appear in theτ -expansion ofb anda fortiori of bτ .
(Bb) The lower power ofτ in the τ -expansion ofbτ 2 is at least 3, and so the lower

power ofτ in the τ -expansion ofbτ 2 + τ is τ .
Let us now construct an orthonormal basis ofL2[0, 1], analogous to the Haar basis,

using the subdivision (3.11).
Let hτ (x) be the function defined as follows:

hτ (x) =


τ−1/2 for x ∈ [0, 1

τ
]

−τ 1/2 for x ∈ ] 1
τ
, 1]

0 for x 6∈ [0, 1].

(3.12)

One can verify directly that∫ 1

0
(hτ (x))2 dx = 1

τ 2
+ τ

(
1 − 1

τ

)
= 1 (3.13)

and that ∫ 1

0
hτ (x) dx = τ−1/2 · 1

τ
− τ 1/2 · 1

τ 2
= 0. (3.14)

Thushτ (x) is orthogonal toχ[0,1]. We therefore put

hτj,b(x) = τ j/2hτ (τ jx − b) hτ0,0 ≡ hτ (3.15)

wherej ∈ N andb is a positiveτ -integer satisfying the conditions (3.8). The support of
hτ (x) is given in (3.7). More precisely

hτj,b(x) =



τ j−1/2 for
b

τ j
6 x 6 b

τ j
+ 1

τ j+1

−τ j+1/2 for
b

τ j
+ 1

τ j+1
< x 6 b + 1

τ j

0 for x 6∈
[
b

τ j
,
b + 1

τ j

]
.

(3.16)
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The norm ofhτj,b(x) is 1,∫ 1

0
(hτj,b(x))

2 dx = τ j−1 · 1

τ j+1
+ τ j+1 · 1

τ j+2
= 1. (3.17)

It is orthogonal toχ[0,1],∫ 1

0
hτj,b(x) dx = τ (j−1)/2 · 1

τ j+1
− τ (j+1)/2 · 1

τ j+2
= 0 (3.18)

and to all functionshτj,b(x) with support which is either disjoint from that of (3.7), or
containing completely (3.7), or contained completely in (3.7). There is no other possibility
due to the process of subdivision of the segment which we have described in (3.11). Indeed,
suppose that

b

τ j
6 b′

τ j
′ <

b + 1

τ j
with j ′ > j (3.19)

and let us demonstrate that
b′ + 1

τ j
′ 6 b + 1

τ j
. (3.20)

The condition (3.19) readsbτ j
′−j 6 b′ < bτj

′−j + τ j
′−j . The three numbers ordered

by the above sequence of inequalities areτ -integers. The next one tob′ in the ordered
sequence ofτ -integers isb′ + 1. The latter is at most equal tobτ j

′−j + τ j ′−j from the strict
inequality on the right and fromτ j

′−j > 1.
Now three cases arise. The first one isj ′ = j . Thenb 6 b′ < b + 1 and thusb = b′:

the segments are equal. Suppose next thatj ′ > j + 1. It follows that either

b′

τ j
′ ∈

[
b

τ j
,
b

τ j
+ 1

τ j+1

)
or

[
b

τ j
+ 1

τ j+1
,
b + 1

τ j

)
.

In both cases a reasoning similar to the above one leads to the conclusion that, respectively,
either [

b′

τ j
′ ,
b′ + 1

τ j
′

]
⊂

[
b

τ j
,
b

τ j
+ 1

τ j+1

]
or [

b′

τ j
′ ,
b′ + 1

τ j
′

]
⊂

[
b

τ j
+ 1

τ j+1
,
b + 1

τ j

]
.

The result of these considerations is the property∫ 1

0
hτj,b(x) h

τ
j ′,b′(x) dx = δjj ′δbb′ . (3.21)

Hence we have constructed an orthonormal set

{χ0 ≡ χ[0,1], h
τ
j,b(x)|j ∈ N, b is a τ -integer verifying (3.8)}. (3.22)

The set (3.22) is dense inL2[0, 1]. This is due to the fact that each open segment(c, d)

in [0, 1] is a countable union ofτ -adic segments.
First it is easily proved that each step function on [0, 1] is a pointwise limit of a sequence

of linear combinations of characteristic functions

χ[ b

τj
, b+1
τj
)(x) = χ[0,1)(τ

j x − b) ≡ χj,b(x) (3.23)

whereb satisfies(A) and(B). It follows from Lebesgue theory that the set (3.23) is dense
in L2[0, 1].
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Then thehτj,b’s are obtained from the non-free set{χ0, χj,b} by the Gram–Schmidt
orthogonalization:

hτj,b = constant

[
χj+1,τb − 〈χ0|χj+1,τb〉χ0 −

∑
j ′,b′

〈hτj,b|χj+1,τb〉hτj ′,b′

]
(3.24)

where the summation extends over allj ′ andb′ such that[
b

τ j
,
b + 1

τ j

]
⊂

[
b′

τ j
′ ,
b′ + 1

τ j
′

]
and j ′ < j. (3.25)

In return any characteristic functionχj,b is a finite linear combination of functions in the
free set{χ0, h

τ
j,b}. Hence the latter is dense inL2[0, 1] since the set of the former is.

The system (3.22) is an orthonormal basis ofL2[0, 1] which we call thebasis ofτ -
wavelets of Haar.

4. τ -multiresolution analysis

The previous basis ofτ -wavelets can easily be extended toL2(R). Here again we make
extensive use ofτ -integers. LetZτ (resp.Z+

τ ) denote the set ofτ -integers (resp. positive
τ -integers). Then for anyj ∈ Z andb ∈ τZ+

τ the set{hτj,b} with

hτj,b(x) = τ j/2hτ (τ jx − b) (4.1)

is an orthonormal basis ofL2(R+). The proof is analogous to the one above for the case
of L2[0, 1]. Note that we now relax condition(A) on b. The condition(B), i.e. b ∈ τZ+

τ ,
requiresb to be an ‘even’τ -integer. The total support of the subset

Seven
0 ≡ {hτ0,b}b∈τZ+

τ
(4.2)

is less than the wholeR+: intervals which are missing are the following

[b + 1, b + τ ] (4.3)

whereb ∈ τ 2Z+
τ . These are the intervals of length 1/τ , unlike all the others

[b, b + 1] b ∈ τZ+
τ (4.4)

which are of length 1. In other words, intervals (4.3) have ‘τ -odd’ lower bound. The set
of ‘τ -odd’ integers is equal to

Zodd
τ = Zτ\τZτ i.e. Zτ = τZτ ∪ Zodd

τ . (4.5)

We associate with the elements ofZ+
τ the elements of the following Haar subset

Sodd
0 := {hτ1,b}b∈τZ+odd

τ
. (4.6)

It is now clear that the set

S0 := Seven
0 ∪ Sodd

0 (4.7)

hasR+ as its total support and that it actually is the set ofZ+
τ -translated ‘mother’ wavelets,

hτ = hτ0,0. Finally the completeτ -Haar basis can be obtained from the set (4.2) through a
simple reflection:

τ -Haar basis= {hτj,b, hτj,b}j∈Z,b∈τZ+ (4.8)

wheref (x) := f (−x).
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Other possibilities exist for extending theτ -Haar basis ofL2(R+) to the wholeL2(R).
For example, one can define theτ -Haar basis on the negative side of the axis as the set

hτj,−b−1 = τ j/2hτ (τ jx + b + 1) b ∈ τZ+, j ∈ Z. (4.9)

The τ -Haar basis

{hτj,b, hτj,−b−1}b∈τZ+, j∈Z (4.10)

looks like a τ -translationally invariant set modulo dilation appropriate to the size of the
support.

We can also change the sequence of negativeτ -integers into another one which would
be more ‘self-similarly consistent’ withZ+

τ but still quasiperiodically tiling the negative
real axis with only two tiles of length 1 and 1/τ . This negative tiling should be chosen in
order to get a set{hτj,b} which is ‘τ -translationally invariant’ on the right modulo appropriate
dilation.

The previous construction of the basis inL2(R) is better understood in the context of
a multiresolution analysis based on the numberτ instead of 2 as it has been formulated by
Mallat [Ma89] and Meyer [Me92, Me93]. We adopt the method of Daubechies [D92] of
construction of an orthonormal wavelet basis. Here we do it in the simplest case: the Haar
basis. Subdividing the interval [0, 1] into

[0, 1] = [0, 1
τ

] ∪ [ 1
τ
, 1] (4.11)

leads to the functional equation

ϕ(x) = ϕ(τx)+ ϕ(τ 2x − τ) (4.12)

for a functionϕ(x) ∈ L2(R). We also demand that∫ +∞

−∞
ϕ(x) dx = 1 (4.13)

and that the set

{ϕ0,b, ϕ0,b}b∈τZ+
τ

∪ {ϕ1,b, ϕ1,b}b∈τZ+odd
τ

(4.14)

whereϕj,b(x) := ϕ(τ jx − b), be an orthonormal sequence inL2(R).
An obvious solution to (4.12) satisfying (4.13) and (4.14) is

ϕ(x) = χ[0,1](x). (4.15)

This solution is called the ‘father wavelet’.
Let us denote byV0 the closure of the linear span of (4.14). More generally,Vj , for

j ∈ Z, is defined fromV0 through theτ -scaling:

f (x) ∈ V0 ⇐⇒ f (τ jx) ∈ Vj (4.16)

for all f ∈ L2(R). Then

Vj ⊂ Vj+1

+∞⋂
−∞

Vj = {0}
+∞⋃
−∞

Vj is dense inL2(R). (4.17)

We now denote byWj the orthogonal complement ofVj in Vj+1,

Vj+1 = Vj ⊕Wj. (4.18)

Then there existsψ(x), the ‘mother wavelet’ inW0, such that the set

{ψ0,b, ψ0,b}b∈τZ+
τ

(4.19)

whereψj,b(x) = τ j/2ψ(τ jx − b) is an orthonormal basis ofW0.
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In our caseψ(x) = hτ (x) as has been defined in (3.12). Then the set

{ψj,b, ψj,b}b∈τZ+
τ

(4.20)

is an orthonormal basis ofL2(R).
It is interesting to look at the functional equation satisfied by the Fourier transforms of

ϕ andψ because it is there that one finds the key of the Daubechies’ construction. From
(4.12) and (4.15) we have:

e−iξ/2 sinξ/2

ξ/2
=

∫ ∞

−∞
ϕ(t)e−iξ t dt

≡ ϕ̂(ξ) = τ−1ϕ̂(
ξ

τ
)+ τ−2e−iξ/τ ϕ̂

(
ξ

τ 2

)
. (4.21)

From

ψ(x) = hτ (x) = τ−1/2ϕ(τx)− τ 1/2ϕ(τ 2x − τ) (4.22)

we get

ψ(ξ) = τ 1/2

(
−ϕ̂(ξ)+ ϕ̂

(
ξ

τ

))
. (4.23)

Note the interesting limit formula obtained after iterating (4.21):

e−iξ/2 sin(ξ/2)

ξ/2
= τ 2 + 1

τ 2
lim
N→∞

τ−N
( ∑

06τ−integer b6τN−1

e−iξb/τN−1

)
. (4.24)

This formula should be relevant in interpretation of diffraction pattern properties of
pentacrystals [GS96]!

We finish the article with a few remarks concerning multiresolution formulae
generalizing (4.12). In order to replace the step function by more regular ones, one can try
higher-order scaling equations for the father wavelet. The steps next to (4.12) should have
the form

φ(x) =
N∑
j>1

∑
kj

cjkj φ(τ
jx − bkj ) bkj ∈ Z+

τ . (4.25)

The solutions of (4.25) should be inL2 and should satisfy (4.13) and some improved version
of (4.14).

Equation (4.25) defines a solutionφ from which a mother wavelet is deduced by using
some recipes like orthogonality conditions [S89]. As a matter of fact we can propose the
following equation as an immediate generalization of (4.12)

φ(x) = c0φ(τx)+ c1φ(τx − τ)+ c2φ(τ
2x − τ 3 − τ). (4.26)

If φ has bounded support, the latter should be contained in [0, τ 2 + 1] which implies that
the supports of the dilated–translated functions in (4.26) are respectively

[0, τ + 1
τ

] [1, τ 2 + 1
τ

] [τ + 1
τ
, τ 2 + 1]. (4.27)

The reason lying behind the choice of the interval [0, τ 2 + 1] and the three subsets (4.27)
is thatτ 2 + 1 is the first ‘odd’τ -integer following 1 in the natural sequence ofτ -integers,
and only three subintervals with bounds in the sequence

{0, 1
τ
, 1, 1 + 1

τ 2 , τ, τ + 1
τ
, τ 2, τ 2 + 1

τ
, τ 2 + 1}

are appropriate to the first multiresolution step.



Tau-wavelets of Haar 4559

Acknowledgments

We are grateful to V Spiridonov and also to the referee for helpful remarks. The work was
supported in part by the National Science and Engineering Research Council of Canada and
by the Fonds FCAR of Quebec.

References
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